Plotta funktioner
I denna uppgift kommer vi att experimentera med funktioner genom att plotta dem. Vi kommer att använda ett av Pythons bibliotek, matplotlib.pyplot
som kan användas för att plotta mätvärden.
Koden i denna uppgift är provkörd på https://replit.com/languages/python3 (Python 3).
1. Plotta en enkel funktion
För att plotta en funktion med matplotlib skickar man in en lista med x-värden och en med motsvarande y-värden, som i följande exempel:
import matplotlib.pyplot as plt
plt.ion()
xs = [-3, -2, -1, 0, 1, 2, 3] # The x values
ys = [-6, -4, -2, 0, 2, 4, 6] # The y values
plt.plot(xs, ys)
plt.savefig('plot.png')
Funktionen plot
sparar plotten på ett internt format inuti biblioteket. Funktionen savefig
räknar ut en representation av plotten i png
-format, och sparar i en fil. Anropet plt.ion()
sätter på “interactive” mode så att plotten även syns i ett fönster.
Uppdrag: Läs programmet och försök förstå vad som händer. Provkör programmet. (Obs! Det kan ta lite tid första gången programmet körs eftersom replit behöver läsa in matplotlib biblioteket.) Bland filerna till vänster ska det nu, förutom main.py
, även finnas en fil plot.png
med en funktionsgraf. Klicka på plot.png
. Du ska kunna se den plottade funktionen.
Kommentar: En bugg i repl.it gör att plot.png
kanske inte dyker upp. Om detta händer, lägg till en dummy-fil genom att trycka på den lilla “Add file”-ikonen ovanför fil-listan () och skriva in valfritt namn. Detta gör att man kommer runt buggen. Kör sedan programmet igen. Nu bör plot.png
dyka upp i fil-listan. Dummy-filen kan du sedan ta bort om du vill.
Quiz: Vilken funktion illustreras av programmet?
Svar
f(x) = 2*x
Uppdrag: Ändra y-värdena så att programmet i stället illustrerar funktionen f(x) = 3*x
Lösning
ys = [-9, -6, -3, 0, 3, 6, 9]
Programmet plottar genom att dra raka streck emellan punkterna. Vad händer om funktionen inte är en rät linje?
Uppdrag: Ändra y-värdena så att programmet illustrerar en funktion som inte är en rät linje.
Tips
Prova t.ex. att sätta y-värdena till kvadraten av x-värdena: ys = [9, 4, 1, 0, 1, 4, 9]
.
2. Plotta en funktion som en jämn kurva
Som du kanske såg så blev kurvan kantig i förra uppdraget. För att få en jämn kurva så kan vi skapa en x-lista med många värden, och med korta avstånd mellan värdena, t.ex. [-3.0, -2.9, -2.8, ..., 2.8, 2.9, 3.0]
. Vi måste då också skapa en lika lång lista med motsvarande y-värden.
Följande hjälpfunktion fplot
plottar en funktion f
mellan x-värdena a
och b
med hjälp av 1000 punkter:
# plotta funktionen f för a <= x <= b
def fplot(f, a, b):
N = 1000 # Antalet punkter att plotta
dx = (b - a) / (N-1) # Avståndet mellan punkterna
xs = [a + i*dx for i in range(N)] # Räkna ut x-värdena
ys = [f(a + i*dx) for i in range(N)] # Räkna ut y-värdena
plt.plot(xs, ys) # Plotta funktionen f
Uppdrag: Försök förstå koden i fplot
. Funktionen använder en konstruktion som kallas listomfattning (list comprehension på engelska).
Hur listomfattning fungerar
En listomfattning använder en särskild slags for-loop för att räkna ut vilka element listan omfattar: uttrycket till vänster om for
räknas ut och stoppas in i listan för varje varv i loopen.
Här är ett enklare exempel på listomfattning:
L = [i*2 for i in range(3)]För att beräkna denna lista körs for-loopen igenom 3 gånger, där
i
får de successiva värdena 0, 1, 2. För varje varv räknas i*2
ut och stoppas in i listan. Resultatet blir listan [0, 2, 4].
Uppdrag: Lägg till hjälpfunktionen fplot
i ditt program. Konstruera en funktion
def g(x):
return x * x
och plotta g-funktionen från -5 till 5.
Tips
Anropa fplot(g, -5, 5)
. Glöm inte att skriva ut den resulterande plotten på fil genom att anropa savefig
.
Uppdrag: Hur många punkter behövs för att kurvan ska se jämn ut? Klarar man sig med färre än 1000? Experimentera genom att prova med olika värden på N
i fplot
.
3. Plotta en funktion till
Vi kan plotta flera funktioner i samma diagram. Det är bara att anropa fplot
en gång för varje funktion.
Uppdrag: Hur skiljer sig funktionen g(x) = x * x
från funktionen h(x) = 0.5 * x * x
? Definiera en ny funktion h
och plotta både g
och h
.
Svar
def h(x): return 0.5 * x * xKan du se att
h
är hälften så hög som g
överallt?
4. Sätt etiketter på axlarna
Vi borde skriva ut etiketter på axlarna. Här visas ett exempel som också skriver ut en titel på plotten och visar hjälplinjer.
xs = [1,2,3]
ys = [2,4,7]
plt.plot(xs, ys)
plt.title("Mitt fina diagram") # Sätt titel på diagrammet
plt.xlabel("x-värden") # Sätt etikett på x-axeln
plt.ylabel("y-värden") # Sätt etikett på y-axeln
plt.grid(True) # Visa hjälplinjer
plt.savefig("plot.png")
Uppdrag: Ändra ditt program så att du lägger till etiketter på axlarna, hjälplinjer och titel på plotten.
5. Skriv ut en legend för funktionerna
När man plottar flera funktioner samtidigt vill man gärna ha en legend som visar vilken funktion som är vilken. Detta kan man göra genom att se till att plt.plot
anropas med ett extra argument på följande sätt:
plt.plot(xs, ys, label="min funktion")
Här är label
namnet på en valfri parameter till plot. (Eftersom parametern är valfri måste vi ange dess namn när vi använder den.)
Förutom att anropa plt.plot
med den extra parametern behöver vi också göra ett anrop
plt.legend(loc = "upper center")
för att legenden skall skrivas ut. Den valfria parametern loc
anger var i diagrammet legenden skall skrivas ut.
Här är ett exempel där vi lagt till en legend till diagrammet.
Uppdrag: Ändra ditt program så att en legend skrivs ut enligt exemplet ovan. Tips: Du behöver lägga till en extra parameter till fplot
.
Mer tips
Lägg till en fjärde parameter l
i definitionen av fplot
. Använd l
vid anropet av plt.plot
. Ändra anropen till fplot
så att du lägger till en fjärde parameter, nämligen strängen du vill skriva ut för kurvan.
Lösning
import matplotlib.pyplot as plt plt.ion() def fplot(f, a, b, l): N = 50 dx = (b - a) / (N-1) xs = [a + i*dx for i in range(N)] ys = [f(a + i*dx) for i in range(N)] plt.plot(xs, ys, label=l) def g(x): return x * x def h(x): return 0.5 * x * x fplot(g, -2, 2, "x*x") fplot(h, -2, 2, "0.5*x*x") plt.title("Mitt fina diagram") plt.xlabel("x-värden") plt.ylabel("y-värden") plt.legend(loc = "upper center") plt.grid(True) plt.savefig("plot.png")
6. Använd anonyma funktioner (lambdas)
Python-funktionerna g(x)
och h(x)
har definierats bara för att du skall kunna skicka med dem som parameter till fplot
. Det finns ett enklare sätt: Du kan skriva funktionen direkt i anropet till fplot
med hjälp av en så kallad lambda. En lambda är en anonym funktion, alltså bara själva funktionsdefinitionen, utan något namn.
I stället för att skriva:
def f(x):
return x*x
fplot(f, -5, 5, "x*x")
så kan du skriva
fplot(lambda x: x*x, -5, 5, "x*x")
Uppdrag: Refaktorisera ditt program så att du använder lambdas istället för g
och h
.
7. Vilken är funktionen?
Här visas tre funktioner. Vilka är de?
Uppdrag: Ändra ditt program så att de tre funktionerna ovan ritas ut.
Tips
Alla funktionerna är första gradens polynom (räta linjer), så de bör ha formen k*x + m
. Frågan är vilka konstanterna k
och m
är?
8. Andragradspolynom
Ett andragradspolynom har formen a2*x*x + a1*x + a0
, där a2
, a1
och a0
är konstanter.
Uppdrag: Plotta polynomen x*x
, 2*x
och deras summa x*x + 2*x
. Gör plotten från -2
till 2
. Kan du se att det tredje polynomet är en summa av de två första?
Uppdrag: Vad händer om du lägger till konstanten 5
?
Tips: Plotta alla tre termerna var för sig (x*x
, 2*x
och 5
), och dessutom hela summan.
9. Utmana dina kompisar (eller din mattelärare :-)
Uppdrag: Plotta egna funktioner. Kan dina kompisar lista ut vilka de är? (Hade du själv kunnat lista ut det?)
Tips: Prova med olika polynom, eller importera biblioteket math
för att använda trigonometriska funktioner, exponential-funktionen, etc. Se https://docs.python.org/3/library/math.html.
Om du adderar eller multiplicerar olika funktioner med varandra kan det bli väldigt klurigt att lista ut vilka de är. Men du kanske inte skall göra problemen alltför kluriga…
Om du vill veta mer om plot-möjligheterna i matplotlib.pyplot
, se t.ex. denna tutorial.